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Abstract— Autonomous driving requires reliable and accu-
rate vehicle control at the limits of tire performance, which
is only possible if accurate slip angle estimates are available.
Recent methods have demonstrated the value of pneumatic
trail for estimating slip angle in the non-linear region using
the Fiala tire model. We present an improved slip angle
estimation method based on the pneumatic trail method, which
incorporates both lateral and longitudinal acceleration effects
through the use of the Dugoff tire model. The proposed method
offers significant improvements over existing methods, where
longitudinal effects of the road-tire were assumed negligible.
The results are demonstrated using CarSim, which relies on
empirical data models for tire modelling and therefore presents
a useful evaluation of the method.

I. INTRODUCTION

Autonomous driving is gaining popularity, and promises
to become the norm in the near future. Driven by the need
to maximize vehicle performance, recent controller designs,
such as those introduced in [5], [8], aim to operate the vehicle
near the tires’ friction limits. However, these controllers
require precise knowledge of vehicle dynamics in order to
safely operate.

Vehicle dynamics are governed by the tire-road force
interaction. The maximum force generated by the tire can
be illustrated through the slip circle, shown in Fig. 1. Near
the centre of the slip circle, indicated by the red region,
the longitudinal slip ratio and lateral slip angle are inde-
pendent of each other. Near the edge of the slip circle, in
the yellow region, the longitudinal and lateral slips are no
longer independent, and the produced tire force is limited
by maximum friction force. Outside of the slip circle, the
vehicle experiences full slip, and tire performances are no
longer maximized.

Given the importance of slip angle and longitudinal slip in
predicting vehicle dynamics, researchers have attempted to
estimate these parameters. Slip angle can be calculated using
accurate GPS and Inertial Measurement Unit measurements
[2]. However, due to its high sensitivity to noise, this
method cannot be used with low-cost sensors available on
most commercial vehicles. Motivated by this need, other
estimation/observer algorithms have been proposed.

In [3] and [13], an Extended Kalman Filter (EKF) is
designed to estimate the slip angles and longitudinal slips
of the tires. The work presented in [3] demonstrated that the
EKF performs well in the linear tire region, but is constrained
in the non-linear region. Furthermore, fast convergence of
the EKF is highly dependent on the accurate selection of tire
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Fig. 1: Slip circle: The horizontal axis is the normalized sideslip
angle, and the vertical axis is the normalized longitudinal slip ratio.
Point A, high slip ratio and low slip angle, corresponds to the case
when the vehicle is accelerating. Point B, low slip ratio and high slip
angle, corresponds to the case when the vehicle steers aggressively.
Dotted lines: vehicle driving at the limits of friction.

parameters and vehicle models. On the other hand, a Particle
Filter (PF) is able to provide more accurate estimates of slip
angles, but is computationally intensive, and thus difficult
to implement in real-time [13]. Another approach, using the
Unscented Kalman filter (UKF), is described in [4]. While
the results are promising, this estimator design is dependent
on several unconventional sensors that are not commonly
found on commercial vehicles.

Recent efforts have demonstrated the benefit of using
pneumatic trail to estimate tire-road behaviours, such as
estimating the friction coefficient and lateral tire forces [7],
[9], [14]. The pneumatic trail is a tire property encoded in the
alignment moment measurements. In [7], it was found that
a linear observer coupled with a pneumatic trail estimator,
can accurately track the sideslip angles in both the linear and
non-linear regions. Furthermore, this method is less reliant
on the accuracy of model and tire parameters, uses simple
calculations, and only requires sensors that are available on
most commercial vehicles. However, the method presented
in [7] assumes a rear wheel drive vehicle, and negligible
longitudinal dynamics on the wheels. Neglecting longitudinal
tire dynamics limits the accurate tracking of slip angles to
areas near the horizontal axis of the slip circle. In additions,
for most vehicles, especially front wheel drive vehicles,
tire saturation occurs much earlier with longitudinal tire
dynamics present (acceleration or braking).

In this paper, a pneumatic trail based observer design with
longitudinal tire dynamics is presented. By accounting for
the longitudinal dynamics, this method extends accurate slip
angle estimations to the full domain of the slip circle. This
observer design improves on the previous methods in two
distinct areas: first, it can accurately estimate slip angle in



both linear and non-linear regions, even with high longitudi-
nal dynamics present; second, it can be implemented for both
front wheel drive and rear wheel drive vehicles. In addition
to the benefits, this observer design still uses a simple model
that is not computationally intensive, and only requires input
from commonly available sensors to operate.

In Section II, the fundamental elements used in the pro-
posed algorithm are defined, including pneumatic trail, tire
models and the vehicle model. The details of the observer
design are presented in Section III, followed by the simu-
lation results in Section IV. Finally, Section V presents the
conclusion and future extensions.

II. COMPONENT MODELS

A. Aligning Moment and Pneumatic Trail

The aligning moment, or self-aligning moment, is the
moment that steers the tire in the direction of vehicle travel
as the tire rolls [12]; it is defined by Eq. (1). The aligning
moment is produced, because lateral force applies at an offset
from the wheel centre, due to the elastic nature of pneumatic
tires. This offset is known as pneumatic trail, tp. For vehicles
with a non-vertical steering axis due to camber angle, the
aligning moment applies at an additional offset, known as
the mechanical trail, tm. Fig. 2 illustrates the relationship
between lateral force, Fy , pneumatic trail, tp, and mechanical
trail, tm for a typical pneumatic tire. In this study, the focus is
on pneumatic trail, and mechanical trail is assumed constant.

Mz = −(tp + tm)Fy (1)

where Mz is the aligning moment. Alignment moment can be
measured by monitoring the torque produced by the steering
assist motor, or by torque sensors mounted on the kingpins.

Fig. 2: In this image, U is the vehicle velocity, and alphaf is the
tire slip angle. Aligning moment is produced because Fy does not
apply directly at the tire’s centre. As tire saturates, tp approaches
the centre, and aligning moment approaches zero. tm is measured
from the centre of the tire. [6]

B. Lateral Force and Pneumatic Trail

As the tire saturates, pneumatic trail approaches zero,
and aligning moment approaches zero [9]. Eq. (2) shows
a simplified pneumatic trail calculation, derived from the
equation presented in [9]. It is important to note that this
model is not accurate for very small small slip angles, or
slip angles outside of the slip circle region. However, this
equation does account for longitudinal dynamics for slip
angles within the slip circle.

tp =

tp0 −
tp0
3
If |
√
(C1)2 + (C2)2|, if σ ≥ 1

0, if σ < 1
(2)

with
C1 =

Cα tan(α)

1 + κ
,C2 =

Cκκ

1 + κ
(3)

In Eq. (2), Cα is the tire’s lateral stiffness and Cκ is the
longitudinal stiffness. If is a function of tire normal force
and friction coefficient, as defined in Eq. (7). σ comes from
the Dugoff tire model defined in Eq. (5). This pneumatic trail
model begins at an initial trail tp0 and decays to zero as the
limits of tire adhesion are reached. A reasonable estimate
for tp0 is assumed to be l

6 , where l is the length of the tire
contact patch [9]. This model ignores the longitudinal effects
due to scrub radius, which may contribute up to 4% error
[10]. Some assumptions are necessary for the formulation of
this equation: [9]

• There are no carcass deformations in the tires
• The tires are isotropic. This implies that unit lateral de-

formation is equal to the unit longitudinal deformation.
• The tire is operating at steady state, the relaxation length

effects and other dynamic effects are not modelled.

C. Dugoff Tire Model

The Dugoff tire model [11] is a simple analytical model
that incorporates both longitudinal and lateral dynamics to
calculate the tire-road force characteristics. It assumes a
steady state tire behaviour. Compared to other well known
models, such as the Fiala tire model or the linear tire model
[9], the Dugoff tire model is more accurate by accounting
for the longitudinal tire dynamics as well as the lateral
dynamics. In comparison to the more sophisticated models,
such as the Pacejeka Magic Formula [9], the Dugoff tire
model uses fewer parameters, and is less reliant on accurate
tire parametrization. The Dugoff tire model is summarized
for the front tires in Eq. (4)-(6),

Fxf =

−Cκ
Kfκf
1 + κf

, ax > 0

−CκKfκf , ax ≤ 0

Fyf =

−Cα
Kf tan(αf )

1 + κf
, ax > 0

−CαKf tan(αf ), ax ≤ 0

(4)

with

Kf =

{
(2− σf )σf σf < 1.

1, σf ≥ 1.
(5)

σf =
(1 + κf )µFzf

2If
√
C2
κκ

2
f + C2

α tan
2(αf )

(6)

Eq. (4) presents the calculations for the longitudinal and
lateral forces for a given slip angle and slip ratio, for both
accelerating ax > 0 and braking ax < 0 conditions. κf
and αf are the longitudinal slip ratio and slip angle values.
Fzf is the normal force applied on the front tire, and µ is the
coefficient of friction between the tire and the ground. In this
case, only the front tires formulation is presented; however,
similar equations apply for the rear tires [9].

As described in [6], an observation can be made that the
µ term and Fz term always appear together, in both the



Dugoff tire model and the pneumatic trail calculations. The
two terms can be combined together into an inverse peak
force coefficient, If .

If =
1

µFzf

Ir =
If ∗ Fzf
Fzr

(7)

D. Vehicle Model

The vehicle model used in this paper is a Single Track
Bicycle Model described in [9] for its simple formulation.
This model does not account for vehicle dynamics such
as lateral and longitudinal weight transfer. A Four Wheel
Vehicle Model, as described in [13], can be used to include
more details.

The vehicle model makes the following assumptions:
• Planar dynamics only, no longitudinal weight transfer
• Four wheel dynamics are combined into two wheels.
• No vertical or lateral dynamics present.

β̇ =
1

mVx
(Fyf + Fyr)− r

ṙ =
1

Iz
(aFxf − bFyf )

(8)

The vehicle slip angle, β, is the difference between vehicle
heading and direction travelled. The vehicle yaw rate is r,
and Vx is the longitudinal vehicle velocity. The length, a, is
the distance between the front axle and the centre of gravity,
and the length b is the distance between the rear axle and
the centre of gravity. Finally, Fx and Fy are the respective
longitudinal and lateral forces produced by the tires.

Assuming the vehicle is a rigid body, the relationship
between the vehicle slip angle and the front and rear tire
slip angles can be expressed as

αf = β +
ar

Vx
− δ

αr = β − br

Vx

αr = αf + δ − (a+ b)r

Vx

(9)

where δ is the steering angle.
The longitudinal slip ratio is given by Eq. (10) and is the

difference between the velocity of the wheel and the velocity

Fig. 3: Single track bicycle model [6]

of the vehicle,

κ =
Vxt − Vx

max(Vxt, Vx, ε)
(10)

where Vxt is the velocity of the wheel, calculated as the
product of the effective tire radius and the wheel rotational
speed; Vx is the longitudinal velocity of the vehicle; and ε is
a constant parameter with a small value so the denominator
is not zero.

For a front wheel drive vehicle, the rear wheel does not
apply driving force, longitudinal effects for the rear tires
are generated by friction. For most cases, this is negligible
compared to the front driving tires. We make the assumption
that the longitudinal slip ratio on the rear tire is zero, or
the rear tires do not slip. Therefore, the front tires slip
ratio becomes Eq. (11). This calculation assumes accurate
knowledge of velocity, and is only valid when the rear wheels
experience negligible longitudinal slip. In cases where this
does not hold true, alternative methods to estimate the slip
ratio, κ, such as an EKF [3], can be used.

κf =
Vxf − Vxr

max(Vxr, Vxf , ε)
(11)

III. OBSERVER DESCRIPTION

The observer algorithm is described in detail below. This
observer uses a linear observer with the Dugoff tire model to
update the slip angles and vehicle dynamics. It also integrates
a pneumatic trail estimation block to update the inverse peak
force coefficient, which is used in the linear observer. Since
the inverse peak force coefficient is a function of both the
friction coefficient and the normal force, this set-up allows
precise estimation of slip angle without having accurate
knowledge of the normal force or the friction coefficient.
Initially, select the nominal µ0, Ffz0 values, and calculate

Fig. 4: Observer block structure.

an initial inverse peak force coefficient, If . Assuming that
the vehicle starts from standstill, the estimated slip angle, α̂f ,
can be set to zero. The algorithm then proceeds as follows:

1) Determine Ir from Eq. (7) and the initialized inverse
peak force coefficient, If .

2) Using the front and rear wheel encoder data, calculate
the longitudinal slip ratio estimate, κ̂f from Eq. (11).

3) With known If , κ̂f , and α̂f , lateral force, F̂yf can be
calculated using the Dugoff tire model presented in Eq.
(4).

4) Calculate α̇f from Eq. (9) and the Single Track Bicycle
Model (Eq. (8)). Note that this derivation does not



assume a constant Vx, and accounts for the longitudinal
dynamics of the vehicle.

α̇f =(
1

mVx
+

a2

IzVx
)Fyf + (

1

mVx
− ab

IzVx
)Fyr

− r − arV̇y
(V 2
x )
− δ̇.

(12)
The observer update rule is described as,

˙̂αf =(
1

mVx
+

a2

IzVx
)F̂yf + (

1

mVx
− ab

IzVx
)F̂yr

− r − arV̇y
(V 2
x )
− δ̇ +K(F̂yf − F̃yf ).

(13)
where K is the observer gain, and F̃yf is given by:

F̃yf = may − F̂yr (14)

5) Calculate α̂f by integrating the observer update rule.
6) Determine α̂r from α̂f using Eq. (9)
7) With the estimated F̂yf , update t̂p based on the mea-

sured aligning moment, using Eq. (1).
8) Update If by rearranging Eq. (2) and substituting in

t̂p and α̂f .

If =


3(tp0 − t̂p)∣∣∣∣√(Ĉ1)2 + (Ĉ2)2

∣∣∣∣ , σf ≥ 1

1

µ0Fz0
, σf < 1

(15)

with

Ĉ1 =
Cκf

κ̂f

1 + κ̂f
, Ĉ2 =

Cαf
tan(α̂f )

1 + κ̂f
(16)

9) Substitute the updated inverse peak force coefficient,
If , into step 1, and repeat the process.

IV. SIMULATION

A. Simulation Set-up

The observer is verified using a high fidelity vehicle model
in CarSim, which is based on tire models discussed in [1] and
[9]. The vehicle model captures the vehicle dynamics such
as longitudinal and lateral dynamics, aerodynamics effects,
steering and wheel geometry etc.. The tire model used is
derived from empirical test data. The vehicle simulated is
a mid-size sedan with m = 1650kg, a = 1.4m, b =
1.65m, Iz = 3234kgm2. The tire parameters are defined
as Cα = 89000N/rad, Cκ = 75000N . The road surface has
a constant µ = 0.7.

Random Gaussian noise is added to each sensor mea-
surement. The sensors and the estimation loop both update
at 100 Hz with the following noises variances: encoder:
1.2m/s; IMU linear acceleration: 2.25m/s2; IMU yaw rate:
2degree/s; torque sensor: 2.25Nm.

Three estimation techniques are compared in the following
simulation:

LL: Linear observer with longitudinal dynamics.

LP: Linear observer with lateral dynamics and pneumatic
trail estimation, as implemented in [6].

LLP: Linear observer with longitudinal dynamics and
pneumatic trail estimation method presented in this paper.

The performances of the three estimation techniques are
compared in the following test scenarios: constant steering
with delayed constant longitudinal acceleration, slalom steer-
ing with delayed constant longitudinal acceleration, and ramp
steering with delayed constant longitudinal acceleration.

The constant steering test is used as a baseline to compare
the observers’ performances in both driving scenarios with
little longitudinal dynamics, and that with high longitudinal
dynamics present. In this test, the vehicle steering angle
is maintained at a constant 3 degrees. From 0s to 40s,
the vehicle accelerates to 20km/h and maintains this speed.
From 40s to 110s, the vehicle accelerates at a maximum of
10km/h/s.

The slalom test is useful in judging observers’ perfor-
mances in extreme driving scenarios. In this test, the vehicle
steering angle oscillates in a sine wave with an amplitude of
5 degrees and frequency of 0.35 rad. Similar to the constant
steering test, the vehicle initially accelerates to 20km/h and
maintains this speed for 40 seconds; it then accelerates
longitudinally at a maximum of 5km/h/s for 50s.

The ramp steering test is used to compare the perfor-
mances of the three observers in scenarios with prolonged
operations at the limit of tire stability. For the first 15 seconds
of the test, the vehicle maintains a 4.5 degrees steering angle.
For the next 35 seconds, the vehicle increases its steering
angle at 0.5 degrees/s until its maximum steering angle. The
longitudinal input is identical to that in the slalom test.

B. Results and Discussions

In the constant steering test, shown by Fig. 5, two ob-
servations can be made. Firstly, the velocity measurement
is realistic in simulating the sensor noise. Furthermore, the
small periodic spikes in the longitudinal slip ratio are due to
gear changes.

In Fig. 8, from t = 0s to 40s, the longitudinal dynamics are
not significant; κ ≈ 0. During this period, all three estimation
methods track slip angles well; however, LL appears to be
more noisy than the other observers. Pneumatic trail blocks
in LP and LLP eliminate some noises.

From t = 50s to 110s, the effects of longitudinal dynamics
become noticeable; κ ≈ 0.05. LP estimates begin to deviate
from the actual slip angle measurements. This is because LP
does not model longitudinal slip.

From t = 110s to 150s, the front tires are fully saturated,
and longitudinal slip become significant as κ ≈ 0.1. LP
significantly underestimates the slip angle, but both LL and
LLP track the slip angle well into the non-linear region
(α ≥ 10 degrees) with an average errors less than ±3
degrees.

In the slalom steering test shown by Fig. 6 and Fig. 9,
similar observations to the constant steering test can be made,
with the following additions: From t = 0s to 5s, LL produces
a noticeable amount of noise and bias in the linear region,
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Fig. 5: Constant steering manoeuvre
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Fig. 6: Slalom test manoeuvre
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Fig. 7: Ramp test manoeuvre

especially when the vehicle is shifting gear. Nonetheless,
LLP is able to adapt to the gear change, and track the actual
slip angle with an average error smaller than 1 degree. From
t = 40s to 90s, LLP is able to track the slip angle in the non-
linear region, whereas LP plateaus when high longitudinal
slip is present.

In the ramp steering test, Fig. 7 and Fig. 10, similar
observations can be made to the above two experiments,
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Fig. 8: Constant steering test results
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Fig. 9: Slalom simulation results
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Fig. 10: Ramp test simulation results

with the following addition: From t = 50s to 60s, the tires
are fully slipping; κ ≥ 1, all three observers fail to estimate
the slip angle. When tires are slipping completely, higher
order dynamics, such as carcass deformation and lateral force
transfer, become significant. These unmodelled dynamics
ultimately lead to failed estimation.

The figures demonstrates that the LLP method tracks the
actual slip angle well in both linear and non-linear slip



regions; in certain cases, LLP outperforms both LL and LP.
This is noted by comparing the average variances between
the three methods, shown in Tables I and II.

TABLE I: avg. error variance of slip angle: const. speed (0s - 40s)

Estimator Const. Steering Slalom Ramp Steering
front/rear front/rear front/rear

LL 4.48 / 8.56 3.82 / 4.80 2.28 / 8.48
LP 0.48 / 3.70 0.48 / 2.36 0.08 / 1.94

LLP 1.94 / 7.56 1.01 / 3.67 0.16 / 0.63

TABLE II: avg. error variance of slip angle: accelerating (40s+)

Estimator Const. Steering Slalom Ramp Steering
front/rear front/rear front/rear

LL 3.73 / 3.86 1.50 / 1.52 22.14 / 21.50
LP 75.12 / 78.31 4.43 / 5.87 409.65 / 377.99

LLP 3.68 / 3.49 1.17 / 1.41 21.32 / 18.62

From Tables I and II, it can be observed that with no
significant longitudinal acceleration present, LP tracks the
actual slip angle with the smallest error; while LL tracks
the slip angle with reasonable error. With pneumatic trail
information incorporated, the tracking variance is reduced,
as shown in the error variance of LLP. In the acceleration
case, LP does not track the slip angle reasonably. LL is able
to track the slip angle in a reasonable manner. LLP exhibits
most accurate tracking with the lowest error variance, even
in situations with longitudinal dynamic present, or when tires
begin to saturate.

In terms of the slip circle presented in Section I, the above
simulations demonstrated that the observer design presented
in this paper, LLP, is able to achieve accurately estimation
near the centre of slip circle, where low longitudinal and
lateral dynamics are present. Through the slalom and the
ramping test, it is shown that the observer can also estimate
the slip angles well near the edge of the slip angle, where
significant longitudinal dynamics are present, to the point
where friction limit is reached.

V. CONCLUSION

The proposed observer integrates a linear observer with
Dugoff tire model and a pneumatic trail estimator. This
design is fast to operate, and does not require expensive
sensors. It uses pneumatic trail to accurately estimate the
slip angle in the tire’s non-slip region. Using the Dugoff tire
model, it is also able to accurately track the slip angle into
the slip region of the tire, even with a significant amount
of longitudinal dynamics present. As verified by the three
simulated test scenarios, this observer design consistently
outperforms other common observer designs.

As future improvements for this paper, stability proof of
the proposed observer will be demonstrated in the sense of
Lyapunov. To validate this approach, experimental data will
also be gathered from an actual test vehicle and run through
the estimation algorithm. Additionally, the vehicle model

could be modified to a more accurate four-wheel vehicle
model to account for other vehicle dynamics.

REFERENCES

[1] E Bakker, H.B. Pacejka, and L. Lidner. A New Tire Model with an
Application in Vehicle Dynamics Studies. In 4th Autotechnologies
Conference, Monte Carlo, 1989.

[2] D.M. Bevly, J. Ryu, and J. C. Gerdes. Integrating INS Sensors with
GPS Measurements for Continuous Estimation of Vehicle Sideslip,
Roll, and Tire Cornering Stiffness. IEEE Transactions on Intelligent
Transportation Systems, 7(4):483–493, 2006.
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